
THREE-TYPES MODELS OF

MULTIDIMENSIONAL SCREENING

Luigi Brighi
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Three-types models of multidimensional screening

1. Introduction

The theory of optimal screening contracts applies to a large variety of

relevant topics such as nonlinear pricing, monopoly regulation, procurement,

optimal taxation and auctions. Most of these applications are based on

the simplifying assumption that agent’s types can be ‘ordered’ by a single

dimension of private information. This assumption greatly simplifies the

analysis and leads to well defined results; for instance, the optimal contract

prescribes that ‘lower’ types be distorted in order to extract the informational

rent from the ‘higher’ types.

There are, however, many economic contexts where a single parameter of

private information is not sufficient to model economic problems accurately.

For example, a multiproduct monopolist may face consumers whose prefer-

ences are best described by a different taste parameter for each good. Clearly,

when consumers preferences are not publicly observable, the nonlinear pricing

problem of the monopolist can only be analysed by means of a multidimen-

sional screening model. Another weakness of one-dimensional models is that

the results they provide are not very robust. In fact, as shown in the recent

theoretical literature,1 many of the properties of optimal contracts can be

lost when further dimensions of private information are introduced into the

model. All this calls for the introduction of multidimensional models.

Unfortunately, the analysis of general multidimensional screening prob-

lems is far more complex as compared to the single dimensional case. There

are certainly a few interesting results on the qualitative properties of the

1 See Armstrong (1996), Rochet and Choné (1998), Armstrong and Rochet (1999)
among others.
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optimal contracts, but multidimensional analysis has not yet succeded in

providing closed-form solutions to the general model. Research in this area

proceeds then by the identification and the study of tractable special cases.2

In this paper we show the variety of optimal screening contracts that

might arise in a simple multidimensional framework à la Armstrong and

Rochet (1999), where only three types of agents are present. Even such

a relatively simple context exhibits the typical difficulty characterizing all

the multidimensional models, which is the absence of an exogenous pattern

of binding incentive compatibility constraints. We will show that several

patterns of binding constraints are possible and that they determine optimal

contracts with quite unusual and counter-intuitive features.

Section 2 introduces the basic assumptions of a principal-agent model

where the agent is engaged in two activities and has private information on

two discrete technological parameters. Section 3 derives the optimal contract

when the agent’s type with ‘high’ technological efficiency in both activities

is not present. In Section 4 the missing type is the one with ‘low’ efficiency

in both activities, while Section 5 deals with the more standard case where

one of the ‘mixed’ types is absent.

2. Basic assumptions

In a principal-agent framework the agent can undertake two kinds of

activities denoted by A and B.3 The levels of the two activities are given,

2 For an excellent survey of the literature on multidimensional screening see Rochet
and Stole (2003).

3 The model presented below has been analysed by Spence (1980), Dana (1993) and
Armstrong and Rochet (1999) among others.
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respectively, by the positive real variables xA and xB . The agent has private

information on technology in both activities. Specifically, we assume that

technology may exhibit either High or Low efficiency, so that there can only

be four types of agents denoted by LL, HL, LH and HH, where LL stands

for low efficiency in both activities, HL means high efficiency in activity A

and low efficiency in activity B and so on. The principal does not observe

the realization of technology, but the probability of occurrence of each type,

denoted by αij with i, j = L,H, is common knowledge.

The agent’s utility is separable in the two activity levels and quasi-linear

in income. Denoting by T a payment from the agent to the principal, the

ij-type agent’s utility is given by

uA
i (xA) + uB

j (xB) − T

We assume that the function uk
i (·) is differentiable, monotone and strictly

concave with uk
i (0) = 0, k = A,B and i = H,L. By

δk(x) = uk
H(x) − uk

L(x)

we denote the incremental utility in activity k. We assume that δk(x) ≥ 0

and that δk(·) is increasing, i.e. δk ′(x) > 0. Therefore, the ‘single-crossing’

property is satisfied in each activity, i.e. the marginal utility in activity k is

monotone in type realizations.

The principal welfare, which is assumed to be additively separable in

activity levels and quasi-linear in income, may also depend on agent’s utility

and is given by

vA
i (xA) + vB

j (xB) + T + β[uA
i (xA) + uB

j (xB) − T ]

where vk
i (·) is an increasing and concave function. The parameter 0 ≤ β ≤

1 is the weight the principal places on the agent’s welfare. For example,
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in a regulatory context such as Baron and Myerson (1982) a low level of

β represents a strong distributive concern of the regulation authority (the

principal) in favor of consumer welfare rather than monopoly profits.

The principal offers the agent a menu of contracts specifying, for each

type ij, the activity levels, xA
ij and xB

ij , in return for a payment, Tij . The

contracts (xA
ij , x

B
ij , Tij) are implementable if they satisfy the incentive com-

patibility (IC) constraints,

uA
i (xA

ij ) + uB
j (xB

ij ) − Tij ≥ uA
i (xA

i′j′ ) + uB
j (xB

i′j′ ) − Ti′j′

for all pairs ij and i′j′. Moreover, individual rationality (IR) requires that

each type obtains a level of utility not less than an outside option level which

is normalized to zero; therefore the implementable contracts must also satisfy

the IR constraints uA
i (xA

ij ) + uB
j (xB

ij ) − Tij ≥ 0, for all i, j.

Under truthful revelation, the contract grants to type ij the rent

Rij = uA
i (xA

ij ) + uB
j (xB

ij ) − Tij

so that the principal welfare in state ij can be more succintly written as

follows

wA
i (xA

ij ) + wB
j (xB

ij) − (1 − β)Rij

where wk
i (x) = vk

i (x) + uk
i (x) is total surplus from activity k. Also, the IC

constraints can be rewritten as

Rij ≥ Ri′j′ + uA
i (xA

i′j′) − uA
i′ (x

A
i′j′ ) + uB

j (xB
i′j′) − uB

j′(x
B
i′j′ )

for all pairs ij and i′j′ and the IR constraints as Rij ≥ 0. For convenience we

shall consider the menu of contracts (xA
ij , x

B
ij , Rij) instead of (xA

ij , x
B
ij , Tij).

By x̄k
i we denote the first-best level of activity k, i.e. the level of xk

which maximizes total surplus wk
i (xk). We assume that first-best levels are

increasing in the type realizations, i.e. x̄k
H > x̄k

L, for k = A,B.
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For future reference let us introduce the following function

xk(ζ) := argmaxx≥0 wk
L(x) − ζδk(x) (1)

where ζ is a real variable. We assume that wk
L

′(x) goes to infinity as x goes to

0, so that xk(ζ) is never negative. It is easily seen that xk(ζ) is a decreasing

function with xk(0) = x̄k
L. To further simplify notation let

δ̂k(ζ) := δk(xk(ζ)) (2)

so that δ̂k(ζ) is a decreasing function.

Finally, notice that, xk(ζ) can be interpreted as the activity level of the

low type in a single-dimensional problem where only activity k is taken into

account. For example, substituting k = A and ζ = (1 − β)[αHL/αLL] in (1)

gives the optimal contract level of activity A for the low efficiency type in

a single-dimension, single-activity screening problem where only types HL

and LL are present. Accordingly, the amount

δ̂A

(
(1 − β)

αHL

αLL

)

will be the informational rent of the high efficiency type, RHL.

3. The model without the high efficiency type

Let us consider the first model with only three types and specifically the

case where the most efficient agent in both the activities is missing, i.e. the

case where αHH = 0. Therefore, we have two ‘mixed’ types, HL and LH,

and the non specialized type of agent, LL.

The principal expected welfare is given by

L = αLL[wA
L (xA

LL) + wB
L (xB

LL)]+

+ αHL[wA
H(xA

HL) + wB
L (xB

HL) − (1 − β)RHL]+

+ αLH [wA
L (xA

LH) + wB
H(xB

LH ) − (1 − β)RLH ]
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The screening problem consists in finding a menu of contracts (xA
ij , x

B
ij , Rij)

maximizing L subject to the individual rationality (IR) and incentive com-

patibility (IC) constraints. It is not difficult to see that the optimal contract

satisfies RLL = 0, xA
HL > xA

LL, xB
LH > xB

LL and that the IC constraints of

type LL always hold with a strict inequality; therefore the only potentially

IC binding constraints are those of types HL and LH, i.e.

RHL ≥ RLH + δA(xA
LH ) − δB(xB

LH ) (3)

RHL ≥ δA(xA
LL) (4)

RLH ≥ RHL − δA(xA
HL) + δB(xB

HL) (5)

RLH ≥ δB(xB
LL) (6)

From the analysis of the first order conditions we see that there are three

different forms of the optimal contract. Each of these cases corresponds to a

specific pattern of binding IC constraints and is determined by the particular

specification of utility functions and the distribution of types.

Let us define

M = δ̂A

(
(1 − β)αHL

αLL

)
− δ̂B

(
(1 − β)αLH

αLL

)

The magnitude M , which can be computed directly from the data of the

problem, turns out to be crucial in determining the actual pattern of binding

incentive constraints and therefore the shape of the optimal contract. The

economic interpretation of M is not difficult to grasp; for example, let’s take

activity A. As we know from Section 2, when the ‘off-diagonal’ IC constraints

are neglected, δ̂A((1 − β)αHL/αLL) is the minimal informational rent that

prevents the agent specialized in activity A from mimicking the low efficiency

type LL. A similar interpretation holds for δ̂B((1 − β)αLH/αLL), therefore,
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Fig. 1. Patterns of binding constraints

M gives the relative profitability in terms of potential rents between the

mixed type specialized in A, HL, and the mixed type specialized in B, LH.

Case A.

The ‘off-diagonal’ IC constraint of type HL with respect to LH, (3), is

binding. This case occurs whenever the following condition holds

δA(x̄A
L ) − δB(x̄B

H ) > M (7)

The left hand side is the ‘net’ incremental utility of type HL with respect to

type LH in both lines of activities when the former mimicks the latter and

the activity levels are fixed at LH first-best. If this term is greater than M

then the type HL has a stronger incentive in mimicking the type LH rather

than the type LL.

Case B.

The ‘off-diagonal’ IC constraint of type LH with respect to HL, (5), is

binding. This case is the mirror image to case A and occurs whenever the
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following condition holds

δA(x̄A
H) − δB(x̄B

L ) < M (8)

Case C.

Only ‘downward’ IC constraints are binding, i.e. (4) and (6). This case

occurs whenever both (7) and (8) are violated, i.e.

δA(x̄A
L ) − δB(x̄B

H ) ≤ M ≤ δA(x̄A
H ) − δB(x̄B

L ) (9)

The three patterns of incentive constraints are depicted in figures 1 and

2, where a solid line pointing from type ij to type i′j′ means that the incentive

constraint that ij not be tempted to chose the i′j′ contract is binding.

The main features of the optimal contract in each of the three cases are

summarized in the following

Proposition 1.

Let αHH = 0. In all the three cases, A, B and C, the low efficiency type,

LL, does not earn any rent, i.e. RLL = 0, and has below first-best levels in

both activities, i.e. xk
LL < x̄k

L, for k = A,B. Moreover, in all the three cases

the mixed types, HL and LH, earn strictly positive rents, i.e. RHL > 0 and

RLH > 0.

In Case A, the mixed type specialized in activity A, HL, has efficient

levels in both activities, i.e. xA
HL = x̄A

H and xB
HL = x̄B

L the levels of the

agent specialized in activity B, LH, are distorted away from first-best levels.

Specifically, the activity levels of type LH are above first-best in the specialized

activity and below first-best in the non specialized activity, i.e. xA
LH < x̄A

L

and xB
LH > x̄B

H .

Case B is the mirror image of Case A.
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Fig. 2. Pattern of binding constraints – Case C.

In Case C, both the mixed types, HL and LH, have first-best levels in

both activities, i.e. xA
HL = x̄A

H , xB
HL = x̄B

L , xA
LH = x̄A

L and xB
LH = x̄B

H .

The proof is in Appendix A.

In order to give a rough idea of the circumstances under which the

various cases apply let us consider the special situation of perfect simmetry

of activities and types, that is we assume that incremental utility is the

same in each activity, i.e. δA(x) = δB(x), and mixed types have the same

probability, i.e. αHL = αLH . It can be easily verified that under perfect

simmetry (7) and (8) are violated so that only case C can occur. Therefore,

cases A and B are possible only when relevant asimmetries are present in

activities as well as types.

There are two remarks about Proposition 1. First, Case C exhibits a

non standard feature as compared to the analysis of one-dimensional models.

Indeed, the optimal contract implements first-best levels of two types rather

than only one. Specifically, the ‘no distortion at the top’ rule applies here to

both the mixed types.

The second remark is concerned with the kind of distorsions required by
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the optimal contract. In cases A and B one of the mixed types has a peculiar

pattern of activity levels, i.e. the agent over-produces with respect to the

first-best levels in the most efficient activity and under-produces in the less

efficient activity. As already noticed in the literature on multi-dimensional

screening, this feature of the optimal contract is at odds with respect to the

models with one-dimensional private information.

4. The model without the low efficiency type

Let us consider a model with only three types where the agent with

low efficiency in both activities is missing, i.e. the case where αLL = 0.

Therefore, we have two ‘mixed’ types, HL and LH, and the most efficient

type of agent, HH.

The principal expected welfare is given by

L = αHH[wA
H(xA

HH) + wB
H(xB

HH) − (1 − β)RHH]+

+ αHL[wA
H(xA

HL) + wB
L (xB

HL) − (1 − β)RHL]+

+ αLH [wA
L (xA

LH ) + wB
H(xB

LH ) − (1 − β)RLH ]

Clearly, the IR constraints of type HH is always met so that the potentially

IR and IC binding constraints are the following

RHH ≥ RHL + δB(xB
HL) (10)

RHH ≥ RLH + δA(xA
LH ) (11)

RHL ≥ 0 (12)

RHL ≥ RHH − δB(xB
HH) (13)

RHL ≥ RLH + δA(xA
LH ) − δB(xB

LH ) (14)

RLH ≥ 0 (15)
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Fig. 3. Binding constraints – Case A.

RLH ≥ RHH − δA(xA
HH) (16)

RLH ≥ RHL + δB(xB
HL) − δA(xA

HL) (17)

For the analysis of the optimal contract we can identify three main cases.

Each of these cases corresponds to a specific pattern of binding constraints

as depicted in figures 3 and 4.

Case A.

Both the IC constraints, (10) and (11), of the high efficiency type, HH,

are binding simultaneously, as depicted in figure 3. This case occurs when

both the following conditions are satisfied,

δA(x̄A
L ) > δ̂B

(
(1 − β)αHH

αHL

)
(18)

δB(x̄B
L ) > δ̂A

(
(1 − β)αHH

αLH

)
(19)

Case B.

This case is characterized by the fact that condition (18) is violated, i.e.

δA(x̄A
L ) ≤ δ̂B

(
(1 − β)αHH

αHL

)
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Fig. 4. Patterns of binding constraints – Case B

Under this condition the IC constraint of type HH with respect to type HL,

(10), must necessarily be binding and we have the two possible patterns of

binding IC constraints as depicted in figure 4.

Case B.(i). Only one IC constraint is binding and this occurs when the

following condition holds:

δA(x̄A
H) < δ̂B

(
(1 − β)αHH

αHL

)
(20)

(notice that this means that (18) is violated since x̄A
H > x̄A

L).

Case B.(ii). This case occurs when (20) is violated and we have three

IC binding constraints, (10), (16) and (17), as depicted in Figure 4.

Case C.

This case is characterized by the violation of (19). Since it is the mirror

image of case B, it will not be treated explicitly.

Proposition 2.

Let αLL = 0. In case A the high efficiency type has a positive infor-

mational rent, i.e. RHH > 0, and first best levels in both activities, i.e.
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xA
HH = x̄A

H and xB
HH = x̄B

H . The low efficiency activities of the mixed types,

HL and LH, are distorted downwards, i.e. xA
LH < x̄A

L and xB
HL < x̄B

L , and

both types earn zero rent, thus RHL = RLH = 0.

In case B.(i), the LH and HH types have first-best levels in both activities;

the level of activity B of the HL type is distorted downward, i.e. xB
HL < x̄B

L .

Only type HH has a positive rent while RHL = RLH = 0.

In case B.(ii), type LH has first best levels in both activities, xA
LH = x̄A

L

and xB
LH = x̄B

H , while type HH has an upward distortion in activity A, i.e.

xA
HH > x̄A

H . The mixed type HL has an upward distortion in activity A and

a downward distortion in activity B, i.e. xA
HL > x̄A

H and xB
HL < x̄B

L . Both,

LH and HH have positive rents while RHL = 0.

The proof is in Appendix B.

As we did is Section 3 we can consider the situation of perfect simmetry

in order to see when the various cases apply. It is not difficult to check that

under perfect simmetry (18) and (19) are always met, so that only case A

can occur. Then we can conclude that cases B and C can only occur when

the model displays strong asimmetries in types as well as activities.

The model studied in the present section exhibits several interesting

features expecially in case B. In B.(i) it is quite unusual that the mixed type

HL has first-best levels in both activities as well as the most efficient type,

HH. Here, as in Section 3, the optimal contract implements pareto-optimal

activity levels for two types out of three. Moreover, while HH has a positive

rent, the type LH is efficient but does not earn any rent. Thus, in case B.(i)

both the mixed types have zero rent.

However, the most striking situation is the one contemplated by case

B.(ii). Indeed, it is one of the ‘mixed’ types, LH, who plays the role of the

‘best’ type and not the high efficiency agent, as is usual. LH has first-best
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activity levels while HH exhibits ‘upward’ distortions in activity A, in the

sense that the optimal contract prescribes an activity level above first-best.

Here we have a violation of the one-dimensional model rule which says ‘no

distortion at the top’.

Finally, another peculiar feature is the pattern of distortions imposed

on the other mixed type by the optimal contract. Type HL displays upward

distortion in the high efficiency activity and downward distortion in the low

efficiency activity. The presence of both upward and downward distortions

is an all mark of multi-dimensional screening problems as we have seen also

in Section 3.

5. The model with only one ‘mixed’ type

In order to complete the analysis we study a model where one of the

mixed types, let us say type LH, is missing, i.e. αLH = 0. Therefore, our

model consists of the three types LL, HL and HH. The analysis of this

case is very similar to the one-dimensional case, indeed, the three types can

be completely ordered in terms of overal incremental utility. Following the

method of Spence (1980) (see also Brighi D’Amato (1998)) for the analysis

of the binding IR and IC constraints, it can be sen that the optimal contract

satisfies the conditions RLL = 0 and RHL = δA(xA
LL) and the pattern of

binding constraints is as depicted in figure 5. The principal’s optimization

problem can be written as follows:

max
RHH ,xA

LL
,xB

LL
,...

L = αLL[wA
L (xA

LL) + wB
L (xB

LL)]+

+ αHL[wA
H(xA

HL) + wB
L (xB

HL) − (1 − β)δA(xA
LL)]+

+ αHH[wA
H(xA

HH) + wB
H(xB

HH) − (1 − β)RHH]
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Fig. 5. Pattern of binding constraints

subject to the IC constraints of type HH

RHH ≥ δA(xA
LL) + δB(xB

HL) (21)

RHH ≥ δA(xA
LL) + δB(xB

LL) (22)

Proposition 3.

Let αLH = 0. The optimal contract has the following features: The high

efficiency type, HH, has a strictly positive rent and first-best levels in both

activities, i.e. xA
HH = x̄A

H and xB
HH = x̄B

H . The ‘mixed’ type HL has a

positive rent, an efficient level in activity A and underproduces in activity

B, i.e. xA
HL = x̄A

H , and xB
HL < x̄B

L . The low efficiency type has zero rent

and both the activity levels are distorted downward, i.e. xA
LL < x̄A

L and

xB
LL = xB

HL < x̄B
L .

The proof is in Appendix C.

As it was expected, the optimal contract conforms to the standard one-

dimensional case so that it obeys the well known rule of ‘no distortion at the

top, no rent at the bottom’.
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6. Summary and conclusions

In this paper we have seen that even in a relatively simple screening model

the multidimensionality of agent’s private information generates several kinds

of optimal contracts. We identify the conditions which discriminate between

the various cases and determine the characteristics of the optimal contracts.

These conditions have a fairly intuitive economic interpretation and can be

easily computed from the primitive data of the model.

The main conclusion of our analysis of models with three types is that

when either the most efficient or the least efficient type are missing, the

optimal screening contracts may exhibit very unusual and peculiar charac-

teristics. For example, it may well happen that not only the most efficient

but also other types of agents have first-best activity levels. Also, we have

a case where even the activity levels of the most efficient type, HH, are

distorted and this is a striking violation of the single-dimensional optimal

contracting rule saying ‘no distortion at the top’. As we have seen, these

‘anomalies’ in optimal contracts are more likely to occur the stronger are the

asimmetries in the technology of activities and in the probability of types.

Finally, we notice that typically in continuous type two-dimensional

screening models the optimal contracts specify a ‘non-participation’ region

where the least efficient types are excluded from any activity.4 Accordingly,

the model of Section 4, with only the high efficiency type and the two ‘mixed’

types, is perhaps the one which best approximate the properties of optimal

contracts in multidimensional settings and which provides more reliable pre-

scriptions in applications.

4 This is the main result in Armstrong (1996).

16



APPENDIX A

The first-order conditions of the optimization problem in Section 3 are

wA
L

′
(xA

LL) − γ2

αLL
δA′

(xA
LL) = 0

wB
L

′
(xB

LL) − γ4

αLL
δB ′

(xB
LL) = 0

wA
H

′
(xA

HL) +
γ3

αHL
δA′

(xA
HL) = 0

wB
L

′
(xB

HL) − γ3

αHL
δB ′

(xB
HL) = 0

wA
L

′
(xA

LH ) − γ1

αLH
δA′

(xA
LH ) = 0

wB
H

′
(xB

LH ) +
γ1

αLH
δB ′

(xB
LH ) = 0

(A.1)

γ2 + γ4 = (1 − β)(αHL + αLH) (A.2)

γ3 + γ4 = γ1 + (1 − β)αLH (A.3)

where γ1 ≥ 0 is the Lagrange multiplier of constraint (3), γ2 of (4), γ3 of (5)

and γ4 of (5). From (A.2) we know that at least one of the two constraints

(4) and (6) must be binding. Moreover, we see that the constraints (3) and

(5) can not be simultaneously binding. Indeed, let γ1, γ3 > 0, so that (3)

and (5) hold as equalities. Putting them together yields

δA(xA
LH ) − δA(xA

HL) = δB(xB
LH ) − δB(xB

HL) (A.4)

But, from (A.1) it is easy to see that, at a solution, xA
HL > xA

LH and xB
LH >

xB
HL therefore (A.4) can not hold. Thus, γ1, γ3 > 0 can not occur.

Now we show that both the constraints (4) and (6) must be simultane-

ously binding , i.e. γ2, γ4 > 0.

If γ1 = γ3 = 0 it follows trivially from (A.2) and (A.3) that γ2, γ4 > 0.

Let us suppose that γ3 > 0 (and hence γ1 = 0) and γ4 = 0, so that γ2 > 0.
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Therefore, (4) and (5) hold as equalities and (6) hold as a strict inequality.

Substituting and rearranging yields

δB(xB
HL) − δB(xB

LL) > δA(xA
HL) − δA(xA

LL) (A.5)

From (A.1) and the values of the Lagrange multipliers we easily see that

xB
HL < xB

LL and xA
HL > xA

LL and therefore eq. (A.5) can not hold. Thus, if

γ3 > 0 then γ4 > 0, but then, from (A.2) and (A.3), it is easy to see that

also γ2 > 0.

In a similar way it can be shown that if γ1 > 0 then γ2, γ4 > 0. Thus,

we can summarize the above analysis as follows:

(i) The ‘downward’ incentive constraints are always binding, i.e. γ2 > 0

and γ4 > 0.

(ii) No more than one of the two off-diagonal incentive constraints can

be binding.

Therefore, we only have three possible patterns of binding constraints

Case A. γ1, γ2, γ4 > 0 and γ3 = 0.

Case B. γ3, γ2, γ4 > 0 and γ1 = 0.

Case C. γ2, γ4 > 0 and γ1 = γ3 = 0.

Let us solve the pricipal problem in Case A. By substituting the equal-

ities (4) and (6) in (3), we obtain

δA(xA
LH ) − δA(xA

LL) = δB(xB
LH ) − δB(xB

LL) (A.6)

Now we find necessary and sufficient conditions for the above equation to

hold. From (A.2) and (A.3) we write γ4 and γ1 in terms of γ2,

γ4 = (1 − β)(αHL + αLH) − γ2

γ1 = (1 − β)αHL − γ2

18



Now, let us substitute γ1 and γ4 into (A.1) so that the optimal activity levels

only depend on γ2. Let us define the following functions

A(t) = δ̂A

[
(1 − β)αHL − t

αLH

]
− δ̂A

[
t

αLL

]

B(t) = δ̂B

[
− (1 − β)αHL − t

αLH

]
− δ̂B

[
(1 − β)(αHL + αLH) − t

αLL

]

for 0 ≤ t ≤ (1− β)αHL. We easily see that, A(t) is increasing and A(0) < 0.

On the other hand, B(t) is decreasing, B(0) > 0 and it is always positive.

Therefore, equation (A.6) holds for some 0 < t < (1 − β)αHL if and only if

A[(1−β)αHL] > B[(1−β)αHL]. Since for t = (1−β)αHL we have xA
LH = x̄A

L

and xB
LH = x̄B

H we obtain

δA(x̄A
L ) − δB(x̄B

H ) > δ̂A

[
(1 − β)αHL

αLL

]
− δ̂B

[
(1 − β)αLH

αLL

]

The proof of Case B is analogous. Finally, the proof of Case C is a trivial

consequence. The optimal contracts are computed in each case by solving

for the value of the multipliers and using the equations of the IC constraints.

APPENDIX B

The first-order conditions of the optimization problem in Section 4 are
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wA
H

′
(xA

HH) +
µ1

αHH
δA′

(xA
HH) = 0

wB
H

′
(xB

HH) +
λ1

αHH
δB ′

(xB
HH) = 0

wA
H

′
(xA

HL) +
µ2

αHL
δA′

(xA
HL) = 0

wB
L

′
(xB

HL) − γ1 + µ2

αHL
δB ′

(xB
HL) = 0

wA
L

′
(xA

LH ) − γ2 + λ2

αLH
δA′

(xA
LH ) = 0

wB
H

′
(xB

LH ) +
λ2

αLH
δB ′

(xB
LH ) = 0

(B.1)

γ1 + γ2 = λ1 + µ1 + (1 − β)αHH (B.2)

λ0 + λ1 + λ2 = γ1 + µ2 + (1 − β)αHL (B.3)

µ0 + µ1 + µ2 = γ2 + λ2 + (1 − β)αLH (B.4)

where γ1 and γ2 are the Lagrange multipliers of constraints (10) and (11),

λ0, λ1 λ2 are the multipliers of (12), (13) and (14) and µ0 µ1, µ2 are the

multipliers of (15), (16) and (17). The complementary slackness conditions

are omitted for simplicity.

From (B.2) at least one of the γ multipliers must be positive. Let us

consider first the case where γ1, γ2 > 0. Thus, both the IC constraints of

type HH are binding and we have

RHH = RLH + δA(xA
LH ) = RHL + δB(xB

HL) (B.5)

In can be easily checked that the constraints (13), (14), (16) and (17) are

satisfied with strict inequality. For instance, let us take the constraint (13).

From (B.1) we have xB
HH > xB

HL so that δB(xB
HH) > δB(xB

HL) and RHL >

(RHL + δB(xB
HL)) − δB(xB

HH) so that by equality (10) we have that (13) is
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satisfied with strict inequality. In a similar way it can be seen that also (14),

(16) and (17) are strictly satisfied so that we must have λ1 = λ2 = µ1 =

µ2 = 0. From (B.3) and (B.4) λ0 > 0, µ0 > 0 so that RHL = RLH = 0 and

from (B.5) it follows

δA(xA
LH ) = δB(xB

HL) (B.6)

In order to find necessary and sufficient conditions for (B.6) to hold let us

express γ1 in terms of γ2, by using (B.2), i.e.

γ1 = (1 − β)αHH − γ2

Substitute γ1 in (B.1) and let γ2 vary between 0 and (1−β)αHH. Therefore

let us define

A(γ2) = δ̂A

(
γ2

αLH

)
and B(γ2) = δ̂B

(
(1 − β)αHH − γ2

αHL

)

The function A(γ2) is decreasing and A(0) = δA(x̄A
L ) and A((1 − β)αHH) =

δA((1−β)αHH/αLH). The function B(γ2) is increasing and B(0) = δB((1−

β)αHH/αHL) and B((1 − β)αHH) = δB(x̄B
L ).

Therefore, we see that there exists 0 < γ∗
2 < (1−β)αHH such that (B.6)

holds if and only if

δ̂A (0) > δ̂B

(
(1 − β)αHH

αHL

)

and

δ̂A

(
(1 − β)αHH

αLH

)
< δ̂B (0)

and these are respectively conditions (18) and (19) in the text.

Let us turn to case B and suppose that γ1 > 0 and γ2 = 0 so that

RHH = RHL + δB(xB
HL) > RLH + δA(xA

LH ) (B.7)

From (B.1) we know that xB
HH > xB

HL and xB
LH > xB

HL, therefore, it is not

difficult to see that at the optimal contract the IC constraints of type HL,
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i.e. (13) and (14), are satisfied with a strict inequality. Hence λ1 = λ2 = 0

so that, by (B.3), λ0 > 0. Thus we have RHL = 0 and, from (10), RHH =

δB(xB
HL).

Let us consider the remaining constraints of type LH and the µ mul-

tipliers. Consider first the case where µ0 > 0, so that RLH = 0. It can be

shown that either (i) both µ1 and µ2 are equal to zero or (ii) both are strictly

positive. Indeed, let µ1 = 0, i.e. (16) holds as a strict inequality so that we

have δA(xA
HL) > δB(xB

HL). From B.1 we have xA
HH ≥ xA

HL so that also (17)

holds a s a strict inequality and µ2 = 0. Using a similar argument it can be

shown that also µ2 = 0 implies µ1 = 0. This proves (i). Point (ii) is proved

similarly.

Case B.(i) in Section 4 corresponds to the following pattern of mul-

tipliers: µ0 > 0, µ1 = 0 and µ2 = 0. Indeed, by (B.1) we know that

xA
HH = xA

HL = x̄A
H . The IC constraints (15) and (16) require in this case

δB(xB
HL) − δA(xA

HL) < 0 (∗)

Moreover, since γ1 = (1 − β)αHH, by (B.1) we have

δB(xB
HL) = δ̂B(γ1 = (1 − β)αHH/αHL)

so that (*) corresponds to condition ??(20).

Let us turn to case B.(ii) which is characterized by the following pattern

of multipliers: µ0 = 0, µ1 > 0 and µ2 > 0. Since µ0 = 0 we have RLH >

0. From (B.4) at least one of the µ’s must be strictly positive. Let us

suppose that µ2 > 0, hence (16) holds as an equality and RLH = δB(xB
HL)−

δA(xA
HL) > 0. Moreover, using (17) we obtain δA(xA

HH) ≥ δA(xA
HL), that by

(B.1) requires µ1 > 0. Similarly it can be shown that µ1 > 0 implies µ2 > 0.

Finally, the pattern of multipliers implies δA(xA
HH) = δA(xA

HL) so that we

have xA
HH = xA

HL.
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APPENDIX C

The first-order conditions of the optimization problem in Section 5 are

wA
L

′
(xA

LL) − (γ1 + γ2 + (1 − β)αHL)
αLL

δA′
(xA

LL) = 0

wB
L

′
(xB

LL) − γ2

αLL
δB ′

(xB
LL) = 0

wA
H

′
(xA

HL) = 0

wB
L

′
(xB

HL) − γ1

αHL
δB ′

(xB
HL) = 0

wA
H

′
(xA

HH) = 0

wB
H

′
(xB

HH) = 0

(C.1)

γ1 + γ2 = (1 − β)αHH (C.2)

where γ1 and γ2 are the Lagrange multiplier of IC constraints of type HH.

From C.1 and C.2 it is easily seen that both the multipliers must be strictly

positive so that, by (21) and (22), we have xB
HL = xB

LL and we obtain

γ1 = (1 − β)
αHLαHH

αLL + αHL

γ2 = (1 − β)
αLLαHH

αLL + αHL

From the values of the multipliers it is easy to compute all the feature of the

optimal contract.
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