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Abstract

Estimating financial risk is a critical issue for banks and insurance companies. Recently,
quantile estimation based on Extreme Value Theory (EVT) has found a successful domain
of application in such a context, outperforming other approaches. Given a parametric model
provided by EVT, a natural approach is Maximum Likelihood estimation. Although the re-
sulting estimator is asymptotically efficient, often the number of observations available to
estimate the parameters of the EVT models is too small in order to make the large sample
property trustworthy. In this paper, we study a new estimator of the parameters, the Maxi-
mum Lq-Likelihood estimator (MLqE), introduced by Ferrari and Yang (2007). We show
that the MLqE can outperform the standard MLE, when estimating tail probabilities and
quantiles of the Generalized Extreme Value (GEV) and the Generalized Pareto (GP) dis-
tributions. First, we assess the relative efficiency between the the MLqE and the MLE for
various sample sizes, using Monte Carlo simulations. Second, we analyze the performance
of the MLqE for extreme quantile estimation using real-world financial data. The MLqE is
characterized by a distortion parameter q and extends the traditional log-likelihood maxi-
mization procedure. When q→ 1, the new estimator approaches the traditional Maximum
Likelihood Estimator (MLE), recovering its desirable asymptotic properties; when q 6= 1
and the sample size is moderate or small, the MLqE successfully trades bias for variance,
resulting in an overall gain in terms of accuracy (Mean Squared Error).

1 Introduction

Recent financial crises and the new regulations for banks and insurance companies1 have prompted

intermediaries to regularly compute statistical tail-related measures of risk. One of the most

popular measures of financial risk is the Value-at-Risk (VaR), usually defined as the α-th quan-

tile of the distribution of losses (negative returns). Although the appropriateness of VaR as a risk

measure (Artzner et al. (1999)) has been recently questioned, it is still the most widely used for

1Basel II for banks, Solvency II for insurance companies and IFRS 32 and 39 for all financial companies.
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risk management, asset allocation and risk-adjusted performance evaluation. Various methods

have been proposed to estimate VaR: historical approach, parametric quantile estimators (e.g.,

Normal or t-Student parametric models), variance-covariance models and Monte Carlo meth-

ods are the most commonly used techniques. Recently, Extreme Value Theory (EVT) has found

extensive application in finance to estimate tail-related risk measures, as it has been shown that

it can provide estimators that perform best overall in predicting Value-at-Risk (Brooks et al.

(2005), Kuester et al. (2006)).

EVT is supported by a sound statistical theory and it relies on the asymptotic properties of

the distributions of sample extrema. Specifically, the two prevailing parametric approaches

for modelling extreme events are the Peaks-Over-Threshold (POT) and Block Maxima (BM)

methods. The POT method exploits the Generalized Pareto (GP) distribution for modelling the

exceedances over a certain threshold, while the BM method relies on the Generalized Extreme

Value (GEV) distribution to model the maximum value that a variable takes in a given period of

time (block).

Although maximum likelihood is the most popular estimation approach in this context, mainly

due to its asymptotic properties and ease of implementation2, often the number of observations

available to estimate GEV and GPD parameters is too small to guarantee the desirable large

sample properties of the Maximum Likelihood Estimator (MLE); thus, inference might not be

trustworthy. Our investigation aims to address this issue by studying for the first time in the EVT

context the performance of a new estimator of the parameters, the Maximum Lq-Likelihood

Estimator (MLqE), which has been recently proposed by Ferrari and Yang (2007). The MLqE

is based on the information measure introduced by Havrda and Charvát (1967) and generalizes

the traditional log-likelihood maximization procedure: it preserves the desirable asymptotic

properties of the traditional MLE, while it allows for a peculiar type of distortion introduced by

the extra parameter q, resulting in a gain in terms of precision (Mean Squared Error) when the

sample size is moderate or small.

The objective of this paper is to study the behavior of the new estimator on both simulated data

and on real-world time series for extreme quantile estimation. First, we show that the new esti-

mator is more efficient than the standard MLE when the goal is to estimate the tail probability

of the GP and GEV distributions. The comparison is carried out through Monte Carlo simula-

tions, where the performance of the two estimators is evaluated for different choices of the tail

probability and sample size. We show that when the distortion parameter q is properly chosen,

2Other methods include the method of moments, the method of probability-weighted moments and the ele-
mental percentile method. The reader is referred to Hosking and Wallis (1987), Grimshaw (1993), Castillo et al.
(1997).
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the Mean Squared Error of the MLqE is sensibly smaller than that of MLE. Second, we focus

on extreme quantile estimation, assessing the performance of MLqE on a financial stock market

index for both GEV and GP distributions. The comparison with the MLE indicates that choices

of the distortion parameter q smaller than 1 can dramatically reduce the generalization error.

The paper is organized as follows. In section 2, we describe the two main parametric approaches

for risk estimation based on EVT; in section 3 we introduce the Maximum Lq-Likelihood Esti-

mator. In section 4 we present a Monte Carlo simulation study to explore the relative efficiency

between the MLqE and the MLE in a finite-sample situation. Section 5 describes a hold-out

validation procedure applied to real-world financial data and compares the generalization error

of the new estimator with that of MLE. Finally, in section 6 we outline the conclusions.

2 Extreme Value Theory for tail-related risk measures

Extreme Value Theory has found numerous applications in various fields (e.g., Lazar (2004)),

including finance. The reader is referred to Embrechts et al. (1997), and Reiss and Thomas

(1997) for an overview of the main applications in finance, while a brief description of the two

main approaches, namely the Peaks-Over-Threshold and the Block Maxima, is reported below.

2.1 Peaks-Over-Threshold

The POT approach considers exceedances over a certain threshold u. Let {Xi,1≤ i≤ n} be a

random sample from a distribution F with mean µ and variance σ2. An exceedance occurs

when Xi > u and an excess over u is defined by y = x− u. The conditional distribution of the

exceedances over u, taken at X > u is

Fu(y) = P(X −u≤ y|X > u) =
F(u+ y)−F(u)

1−F(u)
, y≥ 0. (1)

Balkema and de Haan (1974) showed that for a large class of distributions, Fu(y)→G(y) as u→
∞ where G(y) is a Generalized Pareto (GP) distribution. A representation of the GP distribution

is

G(y;ξ ,σ) =





1−
(

1+
ξ
σ

y
)−1/ξ

, ξ 6= 0,

1− exp(−y/σ), ξ = 0,

(2)

with

y ∈
{

[0,∞) , ξ ≥ 0,
[0,−σ/ξ ] , ξ < 0.
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The probability density function g is obtained by differentiating with respect to x:

g(x;ξ ,σ) =





σ−1
(

1+ξ
(x−u)

σ

)−(1/ξ+1)

, ξ 6= 0,

σ−1 exp(−(x−u)/σ), ξ = 0.

(3)

The shape parameter ξ can be positive, negative or zero and provides an indication on the

heaviness of the tail. The GP can represent different distributions depending on the value taken

by ξ . In particular, when ξ > 0, we obtain the ordinary Pareto distribution which is suitable for

modelling heavy tailed distributions such as financial returns. When ξ = 0 and ξ < 0 we have

respectively the exponential and the Pareto II type distributions.

From eq.(1) one can obtain the following equality for values of x larger than u:

1−F(x) = (1−F(u))(1−Fu(x−u)). (4)

Given a sufficiently high threshold value, Fu(x−u) can be estimated using the plug-in estimate

based on GP distribution and F(u) can be estimated using the sample proportion of observa-

tions. Thus, from eq.(4) one can write the tail estimator of F(x). Inverting the expression for

the tail gives the estimating equation of the Value-at-Risk3

V̂aR1−α = u+
σ̂
ξ̂

(
n

Nu
α−ξ̂ −1

)
, (5)

where Nu denotes the observed number of exceedances over the threshold u. The reader is

referred to McNeil et al. (2005) for a complete mathematical treatment of the POT approach for

Value-at-Risk estimation.

Note that the asymptotic result poses some applicability constraints. In fact, the threshold u

has to be large in order the Generalized Pareto approximation to hold; as a consequence, few

exceedances would left. Thus, if an excessively high threshold is chosen, the plug-in estimator

might be inaccurate with high variance. Furthermore, the asymptotic properties of the Maxi-

mum Likelihood estimator would hardly hold. Conversely, a low threshold would inevitably

induce bias.

2.2 Block Maxima

The BM method models the maximum value that a variable takes in a given period of time

(block). Consider a random variable X with cumulative distribution function F(x) with mean

3The Value-at-Risk is usually defined as the α-th quantile of the distribution of losses, or the negative returns.
Namely, VaR1−α := inf{x ∈ ℜ : P(X > x) ≤ α} where X is a real-valued random variable representing losses or
negative returns and 0≤ α ≤ 1. Typically, values of interest for α are 0.05 and 0.01.
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µ and variance σ2. Let {Yi,1≤ i≤ n} be a random sample from the standardized distribution

F
(

x−µ
σ

)
and define4

Yn,n = max{Y1,Y2, ...,Yn} .

In addition, let {an;n≥ 1} and {bn ≥ 0;n≥ 1} be sequences of numbers such that

P
(

Yn,n−an

bn
≤ x

)
→ G(y), (6)

as n → ∞ for some non-degenerate distribution G. Fisher and Tippett (1928), and Gnedenko

(1943) showed that G belongs to one of the following three extreme value distributions:

Gumbel: Λ(y) = exp(−exp(−y)), −∞≤ y≤ ∞

Fréchet: Φ(y;α) =
{

0, y≤ 0
exp(−y−α), y > 0, α > 0

Weibull: Ψ(y;α) =
{

exp(−(−y)α), y≤ 0 α > 0
1, y > 0.

Later, Jenkinson (1955) and von Mises (1954) suggested a re-parametrization of the above

expressions by setting ξ = α−1 for the Fréchet distribution and ξ = −α−1 for the Weibull

distribution. Thus, Gumbel, Fréchet and Weibull can be represented in a unified parametric

model, known as the Generalized Extreme Value distribution (GEV), where ξ represents the

shape parameter and gives an indication about the heaviness of the tail of the distribution.

The following characterization, which includes also the location and scale parameters µ and σ ,

is most commonly used:

H(x;ξ ,µ ,σ) =





exp
[
−

(
1+ξ x−µ

σ

)−1/ξ
]
, if ξ 6= 0, 1+ξ x−µ

σ > 0

exp
[
−exp

(
−x−µ

σ

)]
, if ξ = 0.

(7)

The probability density function is then:

h(x;ξ ,µ,σ) =





1
σ

(
1+ξ x−µ

σ

)−1/ξ−1
exp

(
−

(
1+ξ x−µ

σ

)1/ξ
)

if ξ 6= 0,

1
σ exp

(
−x−µ

σ

)
exp

(
exp

(
−x−µ

σ

))
, if ξ = 0,

(8)

4We could study as well the minimum rather than the maximum and the results for one of the two can be
immediately transferred using the relationship Y1,n =−max{−Y1,−Y2, ...,−Yn}.
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with 1+ξ x−µ
σ > 0. We remark that the asymptotic results just described only guarantee that Y

is approximately distributed according to a GEV distribution. Hence, the accuracy of such an

approximation relies strongly on the size of the blocks from which the maxima are computed.

The block maxima approach allows to compute the so-called return-level, that is the level ex-

pected to be exceeded in one out of the k periods of length n. Given a block size large enough

to hold the GEV approximation, the return level can be computed by inverting eq.(7) and thus

obtaining

Uk = H−1
(

1− 1
k

;ξ ,σ ,µ
)

. (9)

Substituting the parameter estimates, we have

Ûk =





µ̂− σ̂
ξ̂

(
1−

(
− log

(
1− 1

k

))−ξ̂
)

, if ξ̂ 6= 0,

µ̂− σ̂ log
(
− log

(
1− 1

k

))
, if ξ̂ = 0.

(10)

3 The Maximum Lq-Likelihood Method

Let f (x;θ0) be the GP density in eq.(3) or the GEV density in eq.(8), where θ0 = (θ01, ...,θ0p)∈
Θ denotes the vector of parameters to estimate (p=2 for GP and p=3 for GEV). Given a random

sample X1, ...,Xn from f (x;θ0), the Maximum Likelihood Estimator is

θ̂n = argmax
θ∈Θ

n

∑
i=1

log [ f (Xi;θ)]. (11)

Maximum Likelihood is the standard approach in parametric estimation, mainly due to the

desirable asymptotic properties of consistency, efficiency and normality. In particular, under

some regularity conditions (e.g., see van der Vaart (1998), Ferguson (1996) ), we have that
√

n
(

θ̂n−θ0

)
D→ N (0,V ) as n → ∞, where V represents the inverse of the Fisher information

matrix.

Note that the asymptotic result is valid under the assumption that the underlying distribution is

actually one of the extreme value distributions. However, the results presented in the previous

section guarantee that the block maxima and the excesses over a threshold are only approxi-

mately from GEV and GP distributions. Thus, two contrasting sources of distortion characterize

the estimation of the tail probability. The first concerns the limit results for the tail quantities.

In the POT method we need an increasingly high threshold, u, in order to guarantee the con-

vergence to the GP distribution; similarly, in the BM method a large block size is necessary

in order to hold the GEV distribution. The second issue deals with the sample size necessary
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to make the asymptotic properties of MLE trustworthy, especially when the goal is to estimate

small tail probabilities. Clearly, if we choose higher thresholds or larger block sizes, the number

of available observations for ML estimation will be too small.

Recently, in order to handle the second issue, Ferrari and Yang (2007) introduced an estimator

inspired to Havrda and Charvát (Havrda and Charvát (1967)) generalized information measure5,

the Maximum Lq-Likelihood Estimator (MLqE). The MLqE of θ0 is defined as

θ̃n = argmax
θ∈Θ

n

∑
i=1

Lq [ f (Xi;θ)] , (12)

where

Lq(z) =





z1−q−1
1−q

i f q 6= 1,

logz i f q = 1.
(13)

The function Lq represents a Box-Cox transformation in statistics and in other contexts it is

often called deformed logarithm of order q. The estimates of the parameters are computed by

solving the following system of equations:

n

∑
i=1

∂
∂θ j

Lq [ f (Xi;θ)] = 0, j = 1,2, ..., p. (14)

When q is a fixed constant, θ̃n belongs to the class of M-estimators. Under some regularity con-

ditions such estimators have well known asymptotic proprieties such as asymptotic normality

(e.g., see van der Vaart (1998) and Huber (1981)).

The MLqE can be considered as a generalization of the traditional MLE. For values of q ar-

bitrarily close to 1, we have that Lq(·)→ log(·) and the MLqE approaches the classical MLE.

However, an advantage is obtained by having q slightly different from 1: in this situation the

MLqE allows trading bias for variance and provides more accurate estimates when the sample

size is small. A q 6= 1 corresponds to assign a different weight to the observations in the sample

based on the rarity of their occurrence. In particular, when q < 1 the role played by extreme

observations, which are the most influential on the estimates, is reduced. Consequently, when

setting q < 1 the variability is reduced by increasing the bias, which can result in an overall gain

in terms of Mean Squared Error, as we shall see. Conversely, if q > 1 the role of the observations

corresponding to density values close to zero is accentuated (Ferrari and Yang (2007)).

5Such information measures, usually called α-order entropies (or q-entropies in physics), relax the additivity
assumption that characterizes Shannon’s information. In recent years α-order entropies have found successful
applications in different fields, such as finance, biomedical sciences, environmental sciences and linguistics (e.g.,
see Gell-Mann (2004).
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In the context of the class of distributions belonging to the exponential family, Ferrari and Yang

(2007) derive the asymptotic properties of the MLqE. They show that the peculiar type of dis-

tortion introduced allows to gain in terms of precision (Mean Squared Error) by reducing the

variance when both the sample size and the tail probability to be estimated are small. Con-

versely, when the sample size is large, reducing the amount of bias allows for the recovery

of a number of desirable large sample properties such as efficiency and consistency. Hence,

the MLq procedure extends the classic method resulting in a general inferential procedure that

inherits most of the desirable features of traditional maximum likelihood methods and at the

same time gains some new properties that can be usefully exploited in ad hoc estimation set-

tings. The following sections report empirical results supporting the use of such estimator in

the EVT framework.

4 Finite-sample efficiency of MLqE: Monte Carlo simulations

In this section we compare the relative efficiency between the MLqE and the MLE on simulated

data from both GEV and GP distributions6. Our first aim is to investigate whether the MLqE

can outperform, in terms of Mean Squared Error, the classical MLE when estimating small tail

probabilities. The estimates of the tail probability are obtained by using the so-called plug-in

approach, where the point estimate of the unknown parameter is substituted into the distribution

of interest.

Let F(x;θ) be the cumulative distribution function for either GEV or GP distributions. The true

parameter is denoted by θ0 and the true tail probability by α (in particular, α = 1−F(x;θ0) if

the right tail is considered, and α = F(x;θ0) otherwise). Further, let α̂n and α̃n be the plug-in

estimates of α , obtained respectively via the ML and the MLq methods.

The relative performance of the two estimators is measured by taking the ratio between the two

Mean Squared Errors:

Rn =
MSE (α̂n)
MSE (α̃n)

=
E(α̂n−α)2

E(α̃n−α)2 =
(E(α̂n)−α)2 +Var(α̂n)
(E(α̃n)−α)2 +Var(α̃n)

. (15)

As pointed out by the error decomposition in the above expression, we are interested in the

relative trade-off between bias and variance of the two estimators, for a given sample size. The

simulations are then carried out as follows:
6The analyses presented in sections 4 and 5 are performed using the statistical computing envirnoment R (R

Development Core Team (2006)). In the routines described we utilize functions from the Extreme Value Theory
package evir (McNeil and Stephenson (2007))
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• For any given sample size n, a number B = 1000 of random samples X1, ...,Xn are gener-

ated from either GEV or GP with parameter vector θ0.

• For each sample, α̂n,b and α̃n,b, b = 1, ...,B, the ML and MLq estimates of the tail prob-

ability α are obtained. The estimates of the parameters for both estimators are computed

by solving numerically the Lq-likelihood equations (14). The optimization is performed

by using a variable metric algorithm (e.g., see Givens and Hoeting (2005)), where the

MLE estimates θ̂n,b are chosen as starting values.

• Finally, the relative performance between the two estimators is evaluated by the ratio

R̂n =
µ̂
µ̃

=
∑B

k=1(α̂n,k−α)2/B

∑B
k=1(α̃n,k−α)2/B

where µ̂ and µ̃ represent the Monte Carlo estimates of the Mean Squared Error for MLE

and MLqE, respectively. Furthermore, the standard error of R̂n is computed via the mul-

tivariate Delta Method as

se
(

R̂n

)
= B−1/2

(
σ̂11

µ̃2 −2σ̂12
µ̂
µ̃3 + σ̂22

µ̂2

µ̃4

)1/2

where σ̂11, σ̂22 and σ̂12 denote respectively the Monte Carlo estimates for the variances

and the covariance of the squared errors (see Appendix 1 for the details of the calculation).

The procedure described above is repeated for several samples sizes (ranging from 5 to 200) and

different choices of the true tail probability α and the distortion parameter q. The simulations

discussed in the remainder of this section are obtained by sampling from a GEV distribution

with parameters

θ0 = (ξ0,µ0,σ0) = (0.1,0.05,0.015),

and from a GP distribution with parameters

θ0 = (ξ0,σ0) = (0.5,1).

We remark that the parameter values7 are comparable in size to the estimates for various stock

indexes computed by Gilli and Kellezi (2006) and McNeil et al. (2005). Nevertheless, we also

performed simulations using other parameter settings, obtaining similar results.

7The value of the shape parameter ξ , which determines heaviness of the tail, is critical for both GEV and GP
distributions. Since financial returns are have usually heavy tailed distributions (Cont (2001)), they can be suitably
represented by considering ξ > 0.
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Figures 1 and 2 show the results for the GP distribution. In particular, figure 1 shows the

performance of the MLqE when q is 0.94 for different values of the tail probability α . For

small and moderate sample sizes, we have that R̂n > 1 and the MLqE is clearly more accurate

than MLE. From figure 2 we can see that MLq estimates are more precise not only for small but

even for larger sample sizes (up to 200). Moreover, for a given tail probability the gain is more

accentuated when q is smaller.

Figures 3 and 4 present the case of the GEV distribution. Similarly to the GP distribution,

figure 3 points out that MLqE is more accurate than the MLE for moderate or small sample

sizes. Moreover, the gain appears to be more evident for smaller values of α . Actually, note

that when α is 0.05, the MLqE outperforms the MLE in accuracy only for sample sizes smaller

than 80, while this is not the case when α equal to 0.01. In figure 4 we can see that the relative

performance of MLqE versus MLE improves when the tail size becomes smaller (α = 0.005)

and the parameter q decreases from 0.95 to 0.93. Recall that decreasing the distortion parameter

q is equivalent to downweighting extreme observations that can be dramatically influential on

the accuracy of the estimates when the size of α is small.

In general, if q is fixed, it is important to note that as the sample size gets larger, the bias

component of the error becomes more relevant than the variance component and the MLE will

always tend to dominate MLqE due to its asymptotic properties. This observation has suggested

that a value of q closer to 1 should be preferred when the sample size increases.

5 Forecasting financial empirical quantiles

The simulation results have encouraged a further study on real-world financial data, where

Extreme Value Theory plays a crucial role in forecasting the empirical quantiles. The analyses

presented in the following sections have been carried out on publicly available financial data8:

the daily log-returns of the Standard & Poor’s 500 index (S&P500) from January 1960 to June

1993. Extreme value analysis on these data set has been previously discussed in literature

(e.g., see McNeil and Frey (2000), and Knight et al. (2005)). The summary statistics for this

data set are reported in table 1. This data set presents features that commonly characterize

Table 1: Descriptive statistics of the log-return series of S&P500 index.
Sample Size Min Max Mean St.Dev. Skewness Kurtosis

8414 -20.388 9.099 0.028 0.871 -1.510 44.300

8http://www.ma.hw.ac.uk/ mcneil/data.html
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the distribution of financial log-returns. In particular, note that the distribution of returns for

the S&P500 index is remarkably skewed. In the remainder of this section we consider the

commonly employed hold-out procedure to estimate the generalization error of the estimates.

We use such a measure (i) to compare the relative performance between MLqE and MLE when

predicting empirical quantiles of one the extreme value distributions (GEV or GP); (ii) to study

the performance of MLqE, relatively to the tail size α and the distortion parameter q.

5.1 Hold-out validation procedure

The comparison between the MLqE and the MLE is carried out using an estimate of the gen-

eralization error (Hastie et al. (2001)), obtained via a repeated hold-out procedure. First, from

the original dataset of the log-returns we take the block maxima (for the BM model) or the ex-

ceedances over a certain threshold (for the POT model). Then, on the filtered data, the following

steps are performed:

(i) The data are randomly divided into a training set of size n(tr) and a testing set of size

n(ts) = n−n(tr), where n is the size of the filtered sample. The training and testing samples

are chosen such that n(ts) = n(tr).

(ii) The ML and MLq estimates of the quantile τ , denoted by τ̂(tr), are computed from the

training set.

(iii) The sample quantile, t(ts), is computed from the testing set.

Steps (i),(ii) and (iii) are repeated for B = 500 times and then the performance of the estimator

is evaluated by

Ẽ = B−1
B

∑
b=1

(
τ̂(tr)

b − t(ts)b

)2
. (16)

Finally, the standard error of Ẽ is calculated using nonparametric bootstrap, based on 2000

replications. The analysis is carried out for both left and right tails of the distributions of returns.

5.2 Empirical results on financial Data

In the filtering phase, 100 observations are extracted from the S&P500 log-return time series.

In the BM model, the original sample is divided in n = 100 blocks, obtaining a block size rea-

sonably large in order the GEV asymptotic approximation to apply (e.g., see Gilli and Kellezi

(2006)). In the POT model, although some data driven procedures have been proposed (Lazar
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(2004)), there seems to be no universal agreement on the choice of the threshold value to em-

ploy. However, Monte Carlo studies (e.g., see McNeil and Frey (2000)) have shown that for

heavy tailed distributions a threshold corresponding to about n = 100 exceedances, performs

well in terms of Mean Squared Error9.

Tables 2 and 3 report the empirical results for the BM and POT approaches, for different quan-

tiles and choices of the distortion parameter. Column 3 and 5 report the generalization error Ẽ

for the left tail and the right tail, while columns 4 and 6 report the percent gain (or loss) in terms

of prediction error of the MLqE over that of MLE. The results for the MLE are reported in the

row corresponding to q = 1, since the two estimators are the same for such a value.

For the BM method, a substantial improvement is obtained when q < 1. In all the cases, the

improvement is relevant when the distortion parameter decreases to q = 0.95. Furthermore, we

notice that the gain deriving from the MLq method is more evident on left tail, which is usually

of major interest in risk analysis as it represents the losses. Actually, it is known that equity

times series usually show a loss/gain asymmetry (Cont (2001)) with left-skewed distributions, as

shown in table 1 for the data sets under exams. Finally, as expected, as the distortion parameter

approaches 1, the usual MLE is recovered and the performance of the two estimators becomes

similar.

Table 2 shows the results corresponding to the POT method. The analysis on the left tail con-

firms the considerations previously discussed for the BM method. However, the performance

on the right tail shows only little or no improvement with respect the standard approach, when

considering the 90th percentile. Nevertheless, the analysis clearly points out that the MLqE can

be considered as a valid alternative to the MLE when computing the value at risk of financial

losses, especially if interested in estimating extreme quantiles.

6 Discussion and Final Remarks

In this work, we have shown that the MLqE can be a valid alternative to the classical MLE

when estimating a small tail probability or a large quantile in the context of Extreme Value

Theory. The MLqE can be regarded as a natural extension of the classical MLE. Specifically, the

distortion parameter q allows to adjust the relative weight of the information provided by each

observation in the sample. If q is close to 1, the estimator preserves the large sample properties

of the MLE, while for q 6= 1 the trade-off between bias and variance is modified, producing an

overall gain in terms of accuracy (Mean Squared Error) when the sample size and/or the tail

9This choice is also confirmed by preliminary exploratory analyses carried out by using the graphical tools
contained in the R package POT Ribatet (2006).
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Table 2: Block Maxima method. The squared error, Ẽ , is computed for q = 1,0.995,0.975
and 0.95 (where q = 1 corresponds to the MLE) and considering two choices of the tail size.
In parenthesis, the bootstrap standard error of Ẽ , computed from 2000 replicates. The percent
gain is computed as (ẼMLE/ẼMLqE −1)×100.

Percentile q Left Tail Right Tail
Ẽ % Gain Ẽ % Gain

1.000 0.3836(0.0332) / 0.2759(0.0248) /
90th 0.995 0.3642(0.0320) 5.3155 0.2716(0.0244) 1.5981

0.975 0.2981(0.0273) 28.6603 0.2565(0.0227) 7.5647
0.950 0.2373(0.0231) 61.6476 0.2429(0.0210) 13.5677

1.000 1.3706(0.1135) / 0.5583(0.0531) /
95th 0.995 1.3213(0.1128) 3.7305 0.5449(0.0523) 2.4618

0.975 1.1594(0.1025) 18.2168 0.4971(0.0478) 12.3238
0.950 1.0239(0.0953) 33.8575 0.4505(0.0432) 23.9352

probability to estimate are small. Such settings are typical in finance, where the attention is

often on estimating very small probabilities with a small number of extrema. Although we have

considered the MLqE for the specific purpose of Extreme Value Theory estimation, this stream

of research seems to be very promising, due to the considerable flexibility of the new estimator

to many classical estimation settings and its finite-sample variance reduction properties.

The simulation study has pointed out that the MLqE is more accurate than MLE in estimating

tail probabilities for GEV and GP distributions for relatively small and moderate sample sizes.

The gain from the MLqE appears to be more remarkable when the target tail probability is

smaller. When the sample size is too large relative to the choice of the distortion parameter

q, the bias component plays an increasingly relevant role and eventually we observe that the

MLqE decreases its accuracy. This indicates that the distortion parameter should approach

1 as the sample size increases in order to preserve the efficiency gain. In addition, smaller

values of the distortion parameter q enhance the accuracy attainable in small sample situation

by reducing the role played by extreme (and more influential) observations. The findings from

the simulation study are also confirmed by the empirical analysis on financial data. We show

that for more extreme target quantiles, the MLqE achieves a superior performance in terms of

13



Table 3: Peaks-Over-Threshold method. Squared error, Ẽ , for q = 1, .995, .975 and .95 (when
q = 1 we are computing the MLE) and two choices of the tail size. In parenthesis, the boot-
strap standard error of Ẽ , computed from 2000 replicates. The percent gain is computed as
(ẼMLE/ẼMLqE −1)×100.

Percentile q Left Tail Right Tail
Ẽ % Gain Ẽ % Gain

1.000 1.4190(0.1307) / 0.522(0.0622) /
90th 0.995 1.3627(0.1277) 4.1327 0.522(0.0618) 0.0094

0.975 1.1630(0.1107) 22.0158 0.5233(0.0623) -0.2430
0.950 0.9671(0.0933) 46.7225 0.5285(0.0631) -1.2296

1.000 7.0898(0.6909) / 1.7555(0.2685) /
95th 0.995 6.7981(0.6763) 4.2903 1.7452(0.2666) 0.5887

0.975 5.7576(0.5813) 23.1364 1.7103(0.2757) 2.6421
0.950 4.7161(0.4806) 50.3295 1.6814(0.2883) 4.4060

generalization error, when the distortion parameter q is chosen to be smaller than 1.

Even if the arbitrariness of the choice of q could be one of the main critics of the new method, we

believe that the main strength of the MLqE derives from the flexibility gained from the choice

of such a parameter and further work need to be focused on this issue. Currently, two research

directions are under investigation on the choice of q: (i) theoretical derivation of optimal values

of q based on asymptotic theory and (ii) data-driven regularization procedures such as cross-

validation.

Appendix: Delta Method Calculation

Consider α , α̂n,b and α̃n,b defined as in section 4. Moreover, let xB = B−1 ∑B
b=1(α̂n,b−α)2 and

yB = B−1 ∑B
b=1(α̃n,b−α)2. By the central limit theorem, for large values of B we have that

√
B

[
xB
yB

]
D→ N

(
µ =

(
µ1
µ2

)
,Σ =

(
σ11 σ12
σ21 σ22

))
, (17)
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where µ1 = MSE (α̂n) and µ2 = MSE (α̃n). We are interested in the limiting distribution of

g(xB,yB) = xB/yB when B→ ∞. By the Delta Method (e.g., see Ferguson (1996)) we have that

√
B g(xB,yB) D→ N

(
g(µ),

•
g(µ)T Σ •

g(µ)
)

, as B→ ∞ (18)

where
•
g(·) is the gradient. In this case we have that

•
g(µ)T =

(
∂

∂ µ1
g(µ),

∂
∂ µ2

g(µ)
)T

=
(

1
µ1

,−µ1

µ2
2

)
, (19)

and

•
g(µ)T Σ •

g(µ) =
(

1
µ1

,−µ1

µ2
2

)(
σ11 σ12
σ21 σ22

)(
1/µ1
−µ1/µ2

2

)

=
σ11

µ2
2
−2σ12

µ1

µ3
2

+σ22
µ2

1
µ4

2
.

Therefore, we obtained that

√
B

(
xB

yB

)
D→ N

(
µ1

µ2
,
σ11

µ2
2
−2σ12

µ1

µ3
2

+σ22
µ2

1
µ4

2

)
, as B→ ∞. (20)
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Figure 1: GP distribution. Monte Carlo Mean Squared Error ratio computed from B = 1000
samples of size n, for α = 0.05,0.01,0.005 and q = 0.94. The dashed lines represent 95%
confidence bands for the case when α = 0.05.
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Figure 2: GP distribution. Monte Carlo Mean Squared Error ratio computed from B = 1000
samples of size n, for various values of the distortion parameter (q = 0.94,0.96,0.98) and true
tail probability α = 0.01.

Figure 3: GEV distribution. Monte Carlo Mean Squared Error ratio computed from B = 1000
samples of size n, for two values of the true tail probability (α = 0.01,0.05) and distortion
parameter q = 0.95. The dashed lines represent 95% confidence bands.
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Figure 4: GEV distribution. Monte Carlo Mean Squared Error ratio computed from B = 1000
samples of size n, for two values of the distortion parameter (q = 0.93,0.95) and true tail proba-
bility α = 0.005. The dashed lines represent 95% confidence bands for the case when q = 0.95.
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